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The process of structural transformations in flowing systems is described on the 
basis of joint examination of the flow and mutual-transformation kinetics of 
kinetic-molecular units. 

Activation and structural theories of viscosity have been widely used to describe vis- 
cosity anomalies in the flow of rheological systems. 

Activation theory examines elementary flow events interpreted as the transition of a 
kinetic-molecular unit through a potential barrier, the height of which depends on the 
applied load. The presence of different types of kinetic units is allowed for in the 
generalization of this theory, but the possibility of their mutual transformation (i.e., the 
kinetics of the process of structural transformations) is not taken into account. 

Structural theory explains viscosity anomaly on the basis of examination of structural 
transformations under the influence of deformation. The latter is described by the kinetic 
equation of the analogous chemical reaction. However, the displacement of structural units 
is not taken into account in this theory [2, 3]. 

A joint examination of the flow and mutual-transformation kinetics of structural units 
makes it possible to explain interesting rheological features of structured systems. Such 
an approach was used in [4] to describe the phenomenon of viscosity superanomaly. Taking 
this approach further, we describe regions corresponding to different types of viscosity 
anomaly. The model is checked against published experimental data. 

i. We will examine the flow of a two-component liquid as our model. Assuming that the 
flow occurs as a result of an activated transition across a potential barrier, according to 
Eyring's representations [i] it may be shown that in this case the connection between the 
strain rate ~ and the shear stress T has the form: 

= avio sh (?~x/kT) + (1 - -  a) ~2o sh (?~/kT).  (1)  

Expression (i) is Eyring's equation [i] for microscopic shear rate averaged over the 
aggregate of particles of each component. The equation was derived from examination of the 
elementary event of the jump of the particles across the potential barrier. The parameters 
~io and Yi in the equation are the result of averaging over all of the particles of a given 
type, so that (i) describes the behavior of a continuous medium. 

We will account for the process of change of the structure during deformation, which 
may be intepreted as the destruction and formation of each of the structures A and B. In 
this case, Eq. (I) must be closed by a kinetic equation describing the change in a over 
time: 

da/dt : - -  k ~  (a) + k ~  (a). (2)  

Equation (2) reflects the interaction of the kinetic-molecular units capable of change with 
the medium characterized by Eq. (I). If the process of the conversion of structure A into 
structure B occurs in a complex manner, as through a large number of intermediate stages, 
then (2) should be regarded as the equation of the net process of structural transformations, 
with effective constants kl and k2 (the simplest case). 

It is natural to suggest that the process of destruction of the structure is an activa- 
tion process and that its effective activation energy Uo is reduced under the influence of a 
mechanical field. As is known [5], the energy of this field E isspent mainlyon deformation 
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Fig. i. Rheological curves with different rates of 
structural transformations: i) % =0.i, ~ =0.6 >~, 
(l); 2) % =0.i, ~=0.342 =~, (1); 3) I =0.I, ~=0.2 < 
~, (~). 

Fig. 2. Regions of viscosity anomaly (I) and super- 
anomaly (If). B is the bounaary curve defining~,(%) 
for the case ~ =0.01. 

of bonds in the structure being destroyed and on the orientation of chaotically directed 
kinetic-molecular units. 

In the deformation of the bonds, the determining parameter is the stress acting in the 
medium. In the orientational rotation, the determining factor is the velocity gradient, 
since the orientation of a kinetic unit in the flow is the result of differences in the 
velocities of different sections of the unit. Assuming that these two processes occur 
independently of each other, we can write E =pT +q#2. Here p and q are constants, respec- 
tively, expressing the rates of the processes. If the process of rotation of a kinetic unit 
is hindered (the case of a solid), it may be assumed that the reduction in effective activa- 
tion energy takes place only as a result of tensile stress. This fact is reflected in the 
description in [6, 7] of the features of mechanical degradation of solid polymers. 

Let us suppose that the process of restoration of the structure is also an activation 
process and is retarded under the influence of the same factors. Then the destruction and 
restoration constants may be written in the form 

Thus, in general form, the model of deformation of a structured liquid contains two 
equations: rheological equation (i) and kinetic equation (2), with the constant relation 
in the form of (3). 

Strictly speaking, not only flow but also structural transformations should be regard- 
ed as the result of elementary events consisting of the destruction (restoration) of bonds. 

' I  
q4 2 /: ~ i -k 

Fig. 3. Transient features 
of the proposed kinetic 
model. 
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TABLE I. Values of the Parameters ~, p, and q for Several 
Flowing Systems, 6 -- mean relative deviation 

Source in 
Material investigated literature z p q 8, % 

Printer's ink No. 54 [ 10] 
Grade nI  asphalt [ 11 ] 
Polyester + aerosol (3~) [12] 
s-polyacrylic acid [ 13] 
Emulsion: [ 10%] 
MethacryLate (MA)+ ~20%1 
+ methylmethacrylate (MMA)[30% [ 151 
+ acetopbenone "40% 

0,633 
0,3 
0,19 
0,006 
0,0026 
0,0036 
0,00026 
0,00006 

0,003 
0,03 
0,006 
0,56 
0,171 
0,045 
0,011 
0,007 

1,6 
7,5- 10 -4 
0,001 
0,008 
3,3.10-5 
0,01.10-5 
0,01.10-5 
0,3.10-5 

Emulsion: ! acetophenone 
MA + MAA + benzene 
+ 40 wt.% ) toluene 

Polyisobutylene + ) 60% 
+ channel black, / 20% 
wt .qo 10% 

o% 

[15] 

[14] 

0,00006 
0,0007 
0,002 
0,7..10-5 
5,6-10 -5 
77.10 -5 

140-10 -5 

0,007 
0,07 
0,06 
7,3 
45  
4,3 
3,8 

0,3.10-s 
100.10-5 
220.10 -~ 

7,25 
5,5 
6 
8 

10 
6 

1,5 
8 

12 
3 

1,5 
1,5 
1,5 
6 

10 
t3 
12 
11 

These events have their own constants (activation energy, oscillation frequency, etc.). 
The kinetic law of change in the structure in this case would depend on the aggregate of 
all of these constants. The simplification being made in the present approach consists of 
allowing for hydrodynamic and rheological quasistationariness. In this case, the velocity 
field can be formulated up to the beginning of the structural transformations, so that the 
latter process (of structural transformations) is affected by the properties of an already 
formed medium (e.g., particle rotation depends on the velocity distribution). This situa- 
tion is actually realized when the characteristic times of change in the hydrodynamic and 
rheological characteristics t~ and t2 are much shorter than the characteristic time of 

change in the structure t3: 

t,, t2 ~ [3. ( 4 )  

It should be noted that such a "nonuniform" examination of different processes is 
encountered fairly often and yields good results. We should remind the reader, however, 
of the study of the dependence of viscosity on chain length [8]. 

2. We will examine features of rheological behavior connected with the process of 
structural transformations, the simplest form of the net scheme of which is as follows: 

k I 
A ~ - B .  

k2 

This scheme corresponds to the kinetic equation 

d t -  kloaexp - + k ~ 0 ( 1 - - a ) e x p - - -  , (5)  RT 

ki0 = k0i exp ( - -  UJRT). 
I t  s h o u l d  be  n o t e d  t h a t  a t  p l  = 0  we o b t a i n  t h e  m o d e l  e x a m i n e d  i n  [ 4 ] .  A s s u m i n g  t h e  t r i v i a l -  
i t y  of  u  (Yi i s  u s u a l l y  s m a l l ) ,  we w i l l  u s e  t h e  f i r s t  t e r m  o f  t h e  e x p a n s i o n  s h ( x )  = x + . . . .  
Then Eq. (1)  t a k e s  t h e  f o r m  

~ = [af t  + (1 - -  a) F21 x, i ( 6 )  

where F i is the flow of the i-th component. It is evident from this that the viscosity of 
such a liquid 

~1 = IaF, + (1 - -  a) F~I-L 

or, in other words, the flow of such a liquid is the cumulative result of the flows of the 
various fractions of its components. Such an expression for the flow of a mixture of dif- 
ferent liquids was found experimentally by Bingham [9]. 

Let us examine the steady-state solution of the system (5), (6). Excluding a, we 
obtain the flow curve 
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Fig. 4. Comparison of theoretical (solid lines) and 
experimental (points) flow curves: a) polyisobutylene + 
channel black [14] (i -- 60%, 2 -- 0); b) emulsion MA+ 
~iA in different solvents [15] (i -- acetophenone; 2 -- 
benzene; 3 toluene). #, sec -I" -- , T, kgf/cml; log ~, 
P; log #, sec -I. 

1 k + 1 �9 kto 
' r--  ?, k = •  z :  , (7) 

F2 k + X klo 

~, = Fi/F~, p = 2 p i / R T ,  q = 2Ch/RT. 

The following may be said in regard to the parameters % and ~. Viscosity usually decreases 
during structuraltransformations, so that we will assume % <i (F~ <FI). The parameter ~ is 
the ratio of the constants of the rates of destruction and restoration of the structure at 
rest, so that ~ < 1 also. It can be seen from (7) that the relation T(#) cannot be obtained 
in explicit form, but all of its characteristic features can be studied. We should note 
first of all the limiting relations (~ = T/#)" 

lim ~ - FF I, lim ~ = F~I(x  + 1)/(• + g). (8) 

The first relation means that at large T (or #) a flow regime with the lowest Newtonian 
viscosity ~ =F21 -- coinciding the viscosity of structure B -- is realized. At small values 
of T (or #) the highest Newtonian viscosity no is realized. As shown by the second equation 
of (8), this value generally does not coincide with the viscosity of structure A. Only at 
~r ~ do we have ~o -Ft. 

Equation (7) makes it possible to qualitatively describe the phenomenon of viscosity 
superanomaly. In this case, the curve of #(T) is a multivalued function in a certain inter- 
val of T, and there may be abrupt transitions from one branch to another (curve 3, Fig. i). 
To find the extremums of function (7), the equation dT/d# =0 is conveniently written in the 
form 

2x ~k+ 1)(k+;9 = , x = q %  (9) 
k (1 -- %) 

For x > 0, Eq. (9) either has no roots or has up to two roots. In the region of the 
parameters where Eq. (9) has two roots, the superanomaly phenomenon is observed. The boun- 
daries of this region may be found from the condition of tangency of the left and right 
sides of Eq. (9). It is given with allowance for k > 0 

k, = • exp (pT + q?Z) = 1 - -  X + V(1 - -  k)2 + X. (10) 

Thus,  to  f i n d  t h e  bounda ry  of  x , ( X ) ,  d i v i d i n g  the  r e g i o n s  o f  monoton ic  and nonmonotonic  
relations T(~), it is necessary to solve a system of three equations: (7), (9), and (i0). 
Excluding T and ~ from them, we obtain 

x . ( ~ , ) = k ,  exp V l k . ( 1 - - ~ )  F - ~ q  - | /  ~-,++X [- ] /  l k .  ( 1 - -  ~) �9 (11) 
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At p = 0, Eq. (ii) coincides with the corresponding work function in [4]. It should also be 
noted that at k=k,(%), the viscosity of the system is expressed only through %: 

1 k . + 1  I 2_z+V(l_z)~+z 
F2 k , + %  F~ 1 + V ( 1 - - X ) 2  + f 

The condition X <x,(~) defines the region of the superanomaly (region II in Fig. 2). 
It has already been noted in [4] that the superanomaly effect is intrinsically of a hystere- 
sis nature. This means that at ~<~,(~), the critical points of the transitions (the points 
of extremum (7)) (T+, y+) and (T-, ~-) (see Fig. i) do not coincide. At T = T+, there is an 
abrupt shift in the flow regime, from an almost intact structure to a flow regime with a 
nearly destroyed structure. At T =~_, the reverse shift of regimes takes place. At ~= 
~,(~) (curve B in Fig. 2), the critical conditions of the transitions coincide and the 
hysteresis character of the phenomenon degenerates. At ~ >~,(%) (region I in Fig. 2), the 
transitions from regime to regime are of a crisis-free nature (curve i, Fig. i). 

We should note certain transient features of Eqs. (5) and (6). Usually the deformation 
of flowing systems occurs in two regimes: a) with a constant shear rate (# = const); b) with 
a constant stress (T =const). In the first case, the pre-steady-state behavior of T(t) 
depends on the value of ao/al (ao is the initial value of a, al is the steady-state value of 
a). At ao/~1 >i, T(t) monotonically increases, approaching its steady-state value at t§ 
At ao/al < i, the stress ever time falls to its steady-state value. It should be remembered, 
however, that, due to the quasistationary character of theological equations (i) and (6), 
the initial value of T(0) will be different from zero. Thus, the curve of T(t) will quali- 
tatively correspond with the experimental curve beginning with a certain moment of time t4 
after the beginning of deformation. In actual systems, during this period the system is 
going through the stage of elastic deformation, accompanied by an increase in stress over 
time. The quasistationary value of the stress T4 is reached by the moment t~. If this 
value of stress is greater than the steady-state value, then the complete curve of T(t), 
including its initial section, will have a maximum. If this value of stress is less than 
the steady-state value, then the curve will be monotonic (Fig. 3). It should be remarked 
that T4 increases with an increase in the shear rate and t4 decreases. 

The analogous transient features are retained on the curve of #(t) in the case T = const. 
There will then be several (two stable and one unstable) steady-state values of a in the 
superanomaly region. The proper choice of initial conditions may lead to one of the stable 
steady-state values of a, which are determined from the equation 

xa exp {pT q- q~ [F~ -- a (F2 - -  F~)]~ = 1 -- a. 

3. The proposed kinetic model of the process of structural transformations contains 
several constants (%, p, q, ~ ) having a clear physical meaning. Knowledge of these constants 
makes it possible to qualitatively evaluate the rate of the structural transformation process 
in the investigated system and to make comparative estimates of the rate of the process in 
different systems. It may be noted for the flow curve in the coordinates ~_~2 that the 
width of the zone of intensive structural transformations is characterized by the parameter 

=p/F2/q (with a change in (#2/D) to unity, Y2 changes to the value of ~). In these same 
coordinates, the quantity ~-~ qualitatively characterizes the region of slight change of 
initial viscosity. The quantity %-i characterizes the limits of the change in viscosity 
during deformation. Table 1 shows the values of these parameters calculated from the com- 
plete flow curves of several polymer systems. 

Analysis of the tabular data shows that an increase in the percentage content of filler 
leads to "reinforcement" of the initial structure (~ decreases). The substitution of one 
filler for another in certain cases leads to an abrupt change in the probability of orienta- 
tional rotation (q changes strongly), which might characterize the nature of the solvent. 

Figure 4 shows a comparison of experimental data from [14, 15] with flow curves (the 
solid lines) calculated with the constants found. It can be seen that the theoretical and 
experimental curves diverge somewhat in the superanoraaly region (Fig. 4a), which is quite 
admissible in view of the simple kinetic scheme adopted for the structural transformation 
process. There is good agreement between the theoretical and experimental data for conven- 
tional s-shaped curves (Fig. 4b). Table 1 and Fig. 4 show that the proposed kinetic model 
can be used not only for qualitative estimates of superanomaly conditions, the rate of the 

1325 



structural transformation process, etc., but for quantitative description of viscometric 
data for a broad class of structured flowing systems. 

The mathematical procedure for finding the constants from the rheological curve or part 
of this curve does not present particular difficulties, although it is tedious. It is sim- 
plified appreciably by using the empirically established and partially valid assumption 
F~ ~ F~ (F2 =n~ I). From (6) and steady-state equation (5), we have 

q = lira { ?-~ In [(I - -a ) /a ]} ,  a = ~ v F ~ .  

Calculating these quantities from the experimental curve of T(~), we may determine q. With 
a known q, by rectifying the relation ~(T) z in[(l -- a)/a] -- q~2, we may find ~ and p as 
functions of ~. In fact, in accordance with steady-state equation (5), the function ~(T) 
may be represented in the form: 

(T) = In • + p~. 

It should be noted that reliable determination of q requires a sufficiently representative 
region of the rheological curve close to F +F2, while the same requirement holds close to 
F~ for determining p~ Use of the complete scheme of calculation for all of the parameters 
would obviously lead to more accurate results. However, it is more important that the model 
itself be further developed with allowance for the complete form of rheological equation (i), 
the non-isothermal nature of the flow in the region of high shear rates, etc. At the pres- 
ent stage, it is apparent that the possibility of qualitatively evaluating the rate of the 
structural transformation process by means of the model parameters ~, p, q, and % is of 
primary importance. 

NOTATION 

y, strain rate; T, shear stress; rio, natural vibration frequency; a, fraction of first 
component; Yi, effective volume of particles of the i-th component; T, absolute temperature; 
k, Boltzmann's constant; A, B, initial and final structures; t, time; kl, k2, constants of 
rates of processes of destruction and restoration of structure, respectively; @(a), ~(a), 
kinetic laws of these processes; p, q, constants characterizing the rate of the processes 
of deformation of bonds and orientational rotation; E, energy of the mechanical effect. 
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BUBBLE MOTION UNDER THE ACTION OF A GRADIENT IN 

SURFACE-ACTIVE ~iATERIAL CONCENTRATION 

V. N. Mankevich UDC 532.72:541.8 

The problem of bubble motion under the action of a gradient in surface-active 
material concentration is considered. The bubble drift velocity is determined. 
The possibility of calculating bubble velocity with simultaneous action of tem- 
perature and concentration gradients is considered. 

The study of bubble and droplet motion in liquid and gaseous media is important in the 
solution of many practical technical problems (emulsion theory, solution of droplets, atomiz- 
ation of fuels, fuel placement in reservoirs, bubbling in air regeneration systems aboard 
spacecraft, etc.). 

In most cases the motive force is provided by gravitation, but there are also cases in 
which droplet or bubble motion is caused by nonuniform surface tension on a boundary [i, 2]. 
This nonuniformity can develop either because of a nonuniform temperature distribution [3-5], 
or because of a nonuniform concentration of surface-active material [6]. 

Below we will study bubble motion under the action of a constant gradient in surface- 
active material concentration, but in contrast to [6], where the simplifications made to the 
fundamental equations were purely intuitive, a more formal simplification procedure will be 
used, based on expansion in the small parameters of the problem. We will assume that mass 
forces are absent, and that evaporation of the surface-active material into the bubbles does 
not occur. The motion is steady-state and translational. We place the origin of the coor- 
dinate system at the center of the moving bubble. 

The distributions of velocity v, pressure p, and surface-active material concentration 
are defined by a system of equations 

av vp 
Ot q- ( W )  v = - -  - -  q -  r a y ,  V v = O, 

P (1) 

Oc_c_ -Jr w e  -= DoAc. 
at 

On the bubble surface at r =R L the equation for conservation of surface-active material 
has the form [2, 7] 

__of . _ _ 1  8 ( F v o s i n O ) - - D ~ - - I  0 ( sinO OF ) --_ D~--Oc I . 
Ot q- RsinO O0 R2sinO O0 O0 Or [~=R (2) 

Limiting ourselves to the case Re << i, Pe << i, we will estimate the order of magnitude 
of the terms of Eqs. (i), (2), transforming to dimensionless variables and choosing for the 
length scale the droplet radius R, for velocity Ida/dc[REc/~, for pressure [da/dc[Ec, and 
for concentration EcR. Performing this estimate, we find that in the zeroth approximation 
for small Re and Pe in Eq. (i) the inertial terms may be neglected, while in Eq. (2) (assum- 
ing also that Dv~Ds) the first two operators on the left-hand side may be dropped, these 
representing the change in surface concentration of the surface-active material with time 
and the convective transfer of the material along the surface. 
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